A级毛片1000部免费看_青青草a免费线看_性色aV性色生活片_激情亚洲五月天视频


軟開關(guān)PFC電路的倍頻感應(yīng)電源的設(shè)計仿真

0 引言

  Boost電路應(yīng)用到功率因數(shù)校正方面已經(jīng)較為成熟,對于幾百瓦小功率的功率因數(shù)校正,常規(guī)的電路是可以實現(xiàn)的。但是對于大功率諸如感應(yīng)加熱電源,還存在很多的實際問題。為了解決開關(guān)器件由于二極管反向恢復(fù)時產(chǎn)生的沖擊電流而易損壞的情況,減少開關(guān)器件在高頻下的開關(guān)損耗。

本文采用一種無源無損緩沖電路取代傳統(tǒng)的LC濾波電路。在分析了軟開關(guān)電路的工作原理以及逆變模塊的分時-移相功率控制策略后,應(yīng)用Matlab軟件進(jìn)行了仿真,并通過實驗結(jié)果驗證了理論分析的正確性。

  1 電源系統(tǒng)整體拓?fù)?/P>

  如圖1所示,該主電路拓?fù)渲饕烧、軟開關(guān)Boost功率因數(shù)校正、逆變、負(fù)載匹配幾個環(huán)節(jié)組成。

  單相整流橋輸出的直流電壓接入無源緩沖軟開關(guān)Boost電路,本文采取Boost電路取代傳統(tǒng)的LC濾波電路。這里Boost電路主要有2個作用:一是提高整流輸入側(cè)的功率因數(shù);二是為逆變側(cè)提供一個穩(wěn)定的直流電壓。Boost校正電路輸出直流電壓加到逆變橋上,逆變橋是由8個IGBT模塊組成的單相全橋逆變器,每個IGBT都有一個反并聯(lián)二極管與其并聯(lián),作為逆變器電壓反向時續(xù)流。逆變器中功率器件由控制電路控制脈沖信號驅(qū)動而周期性的開關(guān);隔離變壓器T的作用是電氣隔離和負(fù)載的阻抗匹配。一般T為降壓變壓器,適當(dāng)改變變壓器的變比即可降低諧振槽路中電感、電容上的電壓值,并可進(jìn)行不同的負(fù)載阻抗匹配。輸出方波電壓經(jīng)過變壓器的隔離降壓后加到由補償電容器和感應(yīng)線圈及負(fù)載組成的諧振回路上。

  1.1 軟開關(guān)APFC電路工作原理

  圖2所示為無源軟開關(guān)Boost電路、串聯(lián)電感及無損SNUBBER電路。與普通的Boost電路相比,增加電感L1限制因VD0的反向恢復(fù)而產(chǎn)生的VT0開啟沖擊電流,C2→VD7作為VD0的SNUBBER電路,VD5→VD6→VD7的串聯(lián)結(jié)構(gòu)和L1→C1→C2之間的諧振與能量轉(zhuǎn)換也有利于抑制VT0的開啟沖擊電流。

  主電路在一個周期內(nèi)的工作情況可以分為6個階段:

  (1)模式1[t0,t1]:在t0時刻,C0通過電阻R放電,VT0在ZCS狀態(tài)下開啟,C1放電,電流流經(jīng)C1→C2→L1回路,由于L1的作用,VT0的開啟電流逐漸平穩(wěn)上升。

  (2)模式2[t1,t2]:電感L1上的電流逐漸增大,C1放電結(jié)束后,電流經(jīng)過回路L0→L1→VD5→VD6→C2流動。

  (3)模式3[t2,t3]:C2被緩慢充電,直至L1能量全部轉(zhuǎn)移過來。最后流經(jīng)VT0的電流和L0的大小相等,C2充電結(jié)束。

  (4)模式4[t3,t4]:t4時刻VT0在ZVS下關(guān)斷,當(dāng)經(jīng)過C2-VD6-C1的電壓和整流輸出電壓Vin相等時,C2通過VD7放電,L1的電流經(jīng)L0→L1→ VD5→C1給C1充電。

  (5)模式5[t4,t5]:當(dāng)C1的電壓和Vin相等后停止充電。L1電流經(jīng)VD5→VD6→VD7流向負(fù)載。

  (6)模式6[t5,t6]:L1電流衰減到0母線電感電流L1通過VD7向C2充電,當(dāng)C2電壓為0后,流過L0的電流經(jīng)VD0流向負(fù)載C0和R0接著回到模式1。

  1.2 后級倍頻逆變電路

  倍頻式高頻逆變電源電路如圖1右邊部分所示。在圖中,由VT11~VT41構(gòu)成第一組逆變橋,由VT12~VT42構(gòu)成第二組逆變橋,兩組逆變橋輪流導(dǎo)通1個諧振周期,每個IGBT器件都以額定負(fù)載電流工作。這樣,如果IGBT的允許開關(guān)頻率為f0,則電源的輸出頻率為2f0。

  分時-移相的控制方法是通過調(diào)節(jié)對角橋臂導(dǎo)通的相位差來調(diào)節(jié)功率。如圖3所示,VT11與VT41之間有一個移相角,滿功率的時候,角度為0,分時-移相調(diào)功就是通過調(diào)節(jié)移相角φ的大小實現(xiàn)功率的改變。

  2 系統(tǒng)控制策略

  控制系統(tǒng)主要采用Altera公司的MAXⅡ系列CPLD芯片EPMl270T144C5和TI公司的TMS320LF2407A型DSP?刂骗h(huán)節(jié)由數(shù)字鎖相環(huán)、PWM控制模塊、分時脈沖控制模塊、DSP移相功率調(diào)節(jié)環(huán)節(jié)以及DSP-PFC環(huán)節(jié)組成。CPLD鎖相環(huán)模塊跟蹤負(fù)載諧振頻率,同時接收DSP輸出的數(shù)字移相角大小,從而經(jīng)PWM、分時模塊計算輸出8路移相觸發(fā)脈沖。DSP計算負(fù)載輸出功率,與功率設(shè)定值比較,經(jīng)積分分離PI算法輸出移相角度;DSP還要對CCM模式下的軟開關(guān)Boost電路進(jìn)行平均電流控制。此外還要實現(xiàn)設(shè)置、保護(hù)以及顯示等功能。

  3 仿真與試驗波形

  基于以上理論分析和系統(tǒng)的硬件與軟件設(shè)計,應(yīng)用Matlab仿真軟件對電路進(jìn)行了仿真。仿真參數(shù)如下:輸入單相220 V,輸入等效阻抗1 mΩ,母線電感6 mH,輸出電容3 300μF,緩沖電感4μH,諧振電阻R為22 Ω,電感為1×10-6,電容為1.15×10-6。在仿真分析的基礎(chǔ)上,對1 kW感應(yīng)電源樣機(jī)進(jìn)行了實驗,表明實驗與仿真結(jié)果基本一致,驗證了理論設(shè)計與系統(tǒng)仿真的正確性。

  4 結(jié)語

  通過仿真與試驗結(jié)果可以看到,應(yīng)用軟開關(guān)PFC電路的倍頻感應(yīng)電源,不僅實現(xiàn)了輸入側(cè)單位功率因數(shù),而且借助于一些緩沖輔助器件,開關(guān)管工作在軟開關(guān)狀態(tài),損耗大大降低,為逆變模塊輸出穩(wěn)定的直流電壓。該設(shè)計具有較高的實用價值。


【上一個】 光電開關(guān)介紹及術(shù)語解釋 【下一個】 開關(guān)電源中濾波電容的正確選擇


 ^ 軟開關(guān)PFC電路的倍頻感應(yīng)電源的設(shè)計仿真