開關(guān)電源進進高效率變換時代
電子設(shè)備特別是計算機的不斷小型化,要求供電電源的體積隨之小型化,因而開關(guān)電源開始替換以粗笨的工頻變壓器為特征的線性穩(wěn)壓電源,同時電源效率得到明顯進步。電源體積的減小意味著散熱能力的變差,因而要求電源的功耗變小,即在輸出功率不變的條件下,效率必須進步。
高效率功率變換:開關(guān)電源設(shè)計追求的目標
相同體積的電源的功率耗散基本相同,因此,欲得到更大的輸出功率,必須進步效率,同時,高的電源效率可以有效地減小功率半導體器件的應力,有利于進步其可靠性。
開關(guān)電源的損耗主要為:無源元件損耗和有源元件損耗
開關(guān)損耗一直困惑著開關(guān)電源設(shè)計者,由于功率半導體器件在開關(guān)過程中,器件上同時存在電流、電壓,因而不可避免地存在開關(guān)損耗,假如開關(guān)電源中開關(guān)管和輸出整流二極管能實現(xiàn)零電壓開關(guān)或零電流開關(guān),則其效率可以明顯進步。
開關(guān)過程引起的開關(guān)損耗大致會占總輸進功率的5%~10%,大幅度降低或消除這一損耗可使開關(guān)電源的效率進步5%~10%。最有效的方法是軟開關(guān)技術(shù)或零電壓開關(guān)或零電流開關(guān)技術(shù)。
在眾多軟開關(guān)的方案中,比較實用的有大功率的全橋變換器,通常采用移相零電壓開關(guān)的控制
方式,這種控制方式要求在低級側(cè)需附加一續(xù)流電感以確保開關(guān)管在零電壓狀態(tài)下導通,由于較大的有效值電流流過,這個附加電感將發(fā)熱(盡管比RC緩沖電路小得多),因而在低壓功率變換中并不采用。
無源無損耗緩沖電路的特點是不破壞常規(guī)PWM控制方式,設(shè)計/調(diào)試簡單。盡管如此,無源無損耗緩沖電路和準諧振/零電壓開關(guān)工作方式也存在一些缺點,如僅能實現(xiàn)關(guān)斷軟開關(guān)以及在反激式變換器中不太適于大負載范圍變化。軟開關(guān)中有源箝位是進步單管正/反激變換器效率的有效方法,最初的專利限制現(xiàn)在已失效,可以普遍應用。
功率半導體器件的進步:高效率功率變換的根本
功率半導體器件的進步特別是Power MOSFET的進步引發(fā)出功率變換的一系列的進步:Power MOSFET的極快的開關(guān)速度,使開關(guān)電源的開關(guān)頻率從雙極晶體管的20kHz進步到100kHz以上,有效地減小了無源儲能元件(電感、電容)的體積。低壓Power MOSFET使低壓同步整流成為現(xiàn)實,器件的導通電壓從肖特基二極管的0.5V左右,降低到同步整流器的0.1V甚至更低,使低壓整流器的效率至少進步了 10%。高壓Power MOSFET的導通壓降和開關(guān)特性的改善,進步了開關(guān)電源的低級效率。功率半導體器件的功耗的降低也使散熱器和整機的體積減小。
電源界有一個不成文的觀點:不穩(wěn)壓的比穩(wěn)壓的效率高、不隔離的比隔離的效率高、窄范圍輸進電壓的比寬范圍輸進的效率高。Vicor的48V輸進電源模塊的效率達到97%。交流輸進開關(guān)電源需要功率因數(shù)校正,由于功率因數(shù)校正已具有穩(wěn)壓功能,在對輸出紋波要求不高的應用(如輸出接有蓄電池或超級電容器),可以采用功率因數(shù)校正加不調(diào)節(jié)的隔離變換器電路拓撲,國外在1986年已有產(chǎn)品,效率到達93%以上。
在DC48V輸進電壓的電源模塊中,效率在93%以上的模塊幾乎無一例外地采用前級穩(wěn)壓、后級不調(diào)節(jié)隔離的方案,并且將第一級的輸出電容和第二級的輸出電感取消,簡化了電路結(jié)構(gòu)。
國內(nèi)的很多開關(guān)電源在設(shè)計上對結(jié)構(gòu)設(shè)計的關(guān)注相對不夠,有時會出現(xiàn)電源內(nèi)的各部分溫升不均,有的地方過熱,有的地方幾乎沒有溫升,甚至PCB上產(chǎn)生較大的損耗。一個好的開關(guān)電源應該是產(chǎn)生熱的元件均勻分布在PCB上,而且發(fā)熱元件的溫升基本一致,PCB應有盡可能小的損耗,這在模塊電源和塑料外殼的 Adapter的設(shè)計中尤為重要。
效率進步的同時:電源的電磁干擾得到減小
在開關(guān)電源的各種損耗中,電磁干擾所產(chǎn)生的損耗,在電源效率高到一定水平后將不容忽視。一方面電磁干擾本身消耗能量,特別是電源效率的進步往往需要軟開關(guān)技術(shù)或零電壓開關(guān)或零電流開關(guān)技術(shù)(無論是專門設(shè)置還是電路本身固有),應用這些技術(shù)減緩了開關(guān)過程的電壓、電流的變化速率或消除了開關(guān)過程,電磁干擾變得很小,不需要像常規(guī)開關(guān)電源電路中需要專門設(shè)置抑制電磁干擾的電路(這個電路是存在損耗的)。
開關(guān)電源進進:高效率功率變換時代
仔細分析,高效率功率變換看起來是很簡單的,甚至有些電路拓撲在20多年前就有介紹(如兩級變換拓撲結(jié)構(gòu),早在UNITRODE82/83年數(shù)據(jù)手冊的 Application Note的AN19中就有介紹、TEK2235示波器中也采用了這種功率變換拓撲結(jié)構(gòu)),但受當時的技術(shù)水平,特別是人們熟悉的限制(總是以為兩級變換的效率比單級低,而事實上兩級變換可以實現(xiàn)事實上的固有的零電壓開關(guān),單級變換則需要特殊的附加電路和控制方式)而并沒有得到承認和應用。器件的性能和人們熟悉的進步已經(jīng)使兩級變換作為高效率功率變換的主要方式之一。
結(jié)語
如今對于開關(guān)電源設(shè)計工程師和制造廠商而言,先進的功率半導體器件可以方便得到,先進的電路拓撲和控制方式已經(jīng)開始應用,他們所剩下的就是想辦法進步自己的技術(shù)水平,同時創(chuàng)造更好的應用機會和市場份額。
高效率功率變換:開關(guān)電源設(shè)計追求的目標
相同體積的電源的功率耗散基本相同,因此,欲得到更大的輸出功率,必須進步效率,同時,高的電源效率可以有效地減小功率半導體器件的應力,有利于進步其可靠性。
開關(guān)電源的損耗主要為:無源元件損耗和有源元件損耗
開關(guān)損耗一直困惑著開關(guān)電源設(shè)計者,由于功率半導體器件在開關(guān)過程中,器件上同時存在電流、電壓,因而不可避免地存在開關(guān)損耗,假如開關(guān)電源中開關(guān)管和輸出整流二極管能實現(xiàn)零電壓開關(guān)或零電流開關(guān),則其效率可以明顯進步。
開關(guān)過程引起的開關(guān)損耗大致會占總輸進功率的5%~10%,大幅度降低或消除這一損耗可使開關(guān)電源的效率進步5%~10%。最有效的方法是軟開關(guān)技術(shù)或零電壓開關(guān)或零電流開關(guān)技術(shù)。
在眾多軟開關(guān)的方案中,比較實用的有大功率的全橋變換器,通常采用移相零電壓開關(guān)的控制
方式,這種控制方式要求在低級側(cè)需附加一續(xù)流電感以確保開關(guān)管在零電壓狀態(tài)下導通,由于較大的有效值電流流過,這個附加電感將發(fā)熱(盡管比RC緩沖電路小得多),因而在低壓功率變換中并不采用。
無源無損耗緩沖電路的特點是不破壞常規(guī)PWM控制方式,設(shè)計/調(diào)試簡單。盡管如此,無源無損耗緩沖電路和準諧振/零電壓開關(guān)工作方式也存在一些缺點,如僅能實現(xiàn)關(guān)斷軟開關(guān)以及在反激式變換器中不太適于大負載范圍變化。軟開關(guān)中有源箝位是進步單管正/反激變換器效率的有效方法,最初的專利限制現(xiàn)在已失效,可以普遍應用。
功率半導體器件的進步:高效率功率變換的根本
功率半導體器件的進步特別是Power MOSFET的進步引發(fā)出功率變換的一系列的進步:Power MOSFET的極快的開關(guān)速度,使開關(guān)電源的開關(guān)頻率從雙極晶體管的20kHz進步到100kHz以上,有效地減小了無源儲能元件(電感、電容)的體積。低壓Power MOSFET使低壓同步整流成為現(xiàn)實,器件的導通電壓從肖特基二極管的0.5V左右,降低到同步整流器的0.1V甚至更低,使低壓整流器的效率至少進步了 10%。高壓Power MOSFET的導通壓降和開關(guān)特性的改善,進步了開關(guān)電源的低級效率。功率半導體器件的功耗的降低也使散熱器和整機的體積減小。
電源界有一個不成文的觀點:不穩(wěn)壓的比穩(wěn)壓的效率高、不隔離的比隔離的效率高、窄范圍輸進電壓的比寬范圍輸進的效率高。Vicor的48V輸進電源模塊的效率達到97%。交流輸進開關(guān)電源需要功率因數(shù)校正,由于功率因數(shù)校正已具有穩(wěn)壓功能,在對輸出紋波要求不高的應用(如輸出接有蓄電池或超級電容器),可以采用功率因數(shù)校正加不調(diào)節(jié)的隔離變換器電路拓撲,國外在1986年已有產(chǎn)品,效率到達93%以上。
在DC48V輸進電壓的電源模塊中,效率在93%以上的模塊幾乎無一例外地采用前級穩(wěn)壓、后級不調(diào)節(jié)隔離的方案,并且將第一級的輸出電容和第二級的輸出電感取消,簡化了電路結(jié)構(gòu)。
國內(nèi)的很多開關(guān)電源在設(shè)計上對結(jié)構(gòu)設(shè)計的關(guān)注相對不夠,有時會出現(xiàn)電源內(nèi)的各部分溫升不均,有的地方過熱,有的地方幾乎沒有溫升,甚至PCB上產(chǎn)生較大的損耗。一個好的開關(guān)電源應該是產(chǎn)生熱的元件均勻分布在PCB上,而且發(fā)熱元件的溫升基本一致,PCB應有盡可能小的損耗,這在模塊電源和塑料外殼的 Adapter的設(shè)計中尤為重要。
效率進步的同時:電源的電磁干擾得到減小
在開關(guān)電源的各種損耗中,電磁干擾所產(chǎn)生的損耗,在電源效率高到一定水平后將不容忽視。一方面電磁干擾本身消耗能量,特別是電源效率的進步往往需要軟開關(guān)技術(shù)或零電壓開關(guān)或零電流開關(guān)技術(shù)(無論是專門設(shè)置還是電路本身固有),應用這些技術(shù)減緩了開關(guān)過程的電壓、電流的變化速率或消除了開關(guān)過程,電磁干擾變得很小,不需要像常規(guī)開關(guān)電源電路中需要專門設(shè)置抑制電磁干擾的電路(這個電路是存在損耗的)。
開關(guān)電源進進:高效率功率變換時代
仔細分析,高效率功率變換看起來是很簡單的,甚至有些電路拓撲在20多年前就有介紹(如兩級變換拓撲結(jié)構(gòu),早在UNITRODE82/83年數(shù)據(jù)手冊的 Application Note的AN19中就有介紹、TEK2235示波器中也采用了這種功率變換拓撲結(jié)構(gòu)),但受當時的技術(shù)水平,特別是人們熟悉的限制(總是以為兩級變換的效率比單級低,而事實上兩級變換可以實現(xiàn)事實上的固有的零電壓開關(guān),單級變換則需要特殊的附加電路和控制方式)而并沒有得到承認和應用。器件的性能和人們熟悉的進步已經(jīng)使兩級變換作為高效率功率變換的主要方式之一。
結(jié)語
如今對于開關(guān)電源設(shè)計工程師和制造廠商而言,先進的功率半導體器件可以方便得到,先進的電路拓撲和控制方式已經(jīng)開始應用,他們所剩下的就是想辦法進步自己的技術(shù)水平,同時創(chuàng)造更好的應用機會和市場份額。
【上一個】 基于PWM控制的開關(guān)電源系統(tǒng)仿真研究 | 【下一個】 智能電表應用現(xiàn)狀及發(fā)展趨勢分析 |